
~COMPRESSIBLE VISCOUS FLUIDS(U) WISCONSIN UNIV-MADISON
MATHEMATICS RESEARCH CENTER H B DA YEIGA NOV 95

UNCLSSIFIED RC-TSR-2 3 DRR0 29-8- C-0041F/G 2/4 NL

soEn~h~hE



IjI~jI

ma..

L MAOillll IIII'-'

"1 .25 14

MICROCOPY RESOLUTION TEST CHART
NAfK)NA BURFA0 OT STANDARDS 1963 A

-. -::,-

.. . . .



STATIONARY moTioNs AND

cc H. Beirao da Veiga
IL

Mathematics Research Center
University of Wisconsin-Madison
610 Walnut Street

Madison, Wisconsin530

November 1985 FLETC

* - ~ (Received August 19, 1985)

Approved for public release
Distribution unlimited

U. S. Army Researchi office

P. 0. Box 12211

Research Triangle Park

North Carolina 27709



UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

STATIONARY MOTIONS AND INCOMPRESSIBLE LIMIT FOR
COMPRESSIBLE VISCOUS FLUIDS

H. Beirao da Veiga*

Technical Summary Report #2883November 1985

We study the system of equations (1.1), describing the stationary motion

of a compressible viscous fluid in a bounded domain a of R*, The total

mass of fluid mini, inside n, is fixed (condition (1.2)). We prove that for

small f and g, there exists a unique solution (u,p) of the above system

of equations, in a neighborhood of (0, m). Moreover, by introducing a

suitable parameter X, we rove that the solution of the Navier-Stokes

equations 0-4W are the incompressible limit of the solutions of the

compressible Navier-Stokes equations * The proofs given here, apply,

without supplementary difficulties, in the context of Sobolev spaces H

and other functional spaces. The results can be extended to the heat

depending case, too.
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SIGNIFICANCE AND EXPLANATION

In this paper we consider the non-linear system of partial differential

equations (i.l, describing the barotropic stationary motion of a compressible

fluid, in a bounded region I.v see [4] for details.

* We assume that the total mass of fluid inside 0 is fixed, and equal to

m l • where the mean density m is given, (condition (1.2)).

We prove' That or small f and g, there exists a unique solution u(x),

p(x) of--(11)in a neighborhood of (0, m). Here, u(x) is the field of .-

velocities, p(x) the density of the fluid, p(p(x)) the pressure field,

and f(x) the external force field (in the physical interesting case one

has g 0).

Moreover, we-prove the the solutions of system .i43 converge to the

solution of the Navier-Stokes equation (-W.441,' as A .+ + i.e. when the Mach-_ . _ .1A'/'

number becomes small. . " ,'
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STATIONARY MOTIONS AND INCOMPRESSIBLE LIMIT FOR COMPRESSIBLE VISCOUS FLUIDS

H. Beirao da Veiga5

1.* INTRODUCTION AND M4AIN RESULTS

In this paper we study the system

-Uh - v~div u + '7p(p) p ~f -(u.Y)u], in a,

(1.1)div(Pu) = ,in n,

ujr - 0,

in a bounded, open domain in R3, locally situated on one side of its boundary r, a C 3

manifold (the case n g~3 can be studied by the same method). As usual,

3
(v * = v~

i i i

System (1.1) describes the stationary motion of a barotropic, compressible fluidi see

Serrin (4). in equation (1.1), p(x) is the density of the fluid, u(x) the velocity

field, f(x) the assigned external force field, p - p(p) the pressure. In the physical

equation one has g - O; however, on studying (1.1) from a mathematical point of view, it

is not without interest to study the general case.

We assume that the total mass of fluid inside nl is fixed, i.e., we impose to the

solution of (1.1) the contraint

(1.2) r (x)dx m,

where the mean density m is a given positive constant. The function p will be written

in the form p m + a, and the new unknown O~x) has to verify the constraint
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(1.3) a Ur (aX)dx -0.

We assume that the real function p + p(p) is defined and has a Lipschitz continuous

first derivative p'(p) in a neighborhood I B [m - 1, m + A] of m, for some positive

I < m/2. We assume also the (unessential) physical condition k - p*(m) > 0. Clearly,%

(1.4) p'Cp) - p'(m + a) - kc - w(a), V a e 1,

*where w(a) is a Lipschitz continuous function, such that w(O) - 0. We set

S sup. j )

Concerning the constants V, and v, we only assume that

(1.5 ~j> 0 , >

In the sequel, we write the system (1.1) in the equivalent form

(-iju -vVdiv u +4 kVa - ~ia) Va +

+ (m +-a) [f -(u.V)u], in 0,

(1.6)m div u + u *Va +- a div u g , in 0,

ulr -0

Let us introduce some notation, We set

3 Dv 3 3v 2
jv12 

= y ( )2 Vv v2  1 a T
i,k=1 I ilk 1 k i kc

*where v is a vector and T a scalar.

We denote by Hk, kc integer, the Sobolev space Wk,(l) , endowed with the usual norm

I 'and by I 1,1 4 p ( + the usual norm in LP LP(fl) Hence, I 1 0 1 12- For

convenience, we utilize the same symbol 11k to denote also the space of vector fields

k,2
v in 9 such that vi W (P), i 1, 2, 3. This convention applies to all the

functional spaces and norms utilized here.

-2-



For k )1, we define

Ilk (v r k: v O on r

moreover,

-22: i2 2 -2'B ~ H } H H l0 0

where ; is the mean value in Q of the scalar field T(X)- Finally, for vector fields,

we define

3 3
H ({v e HO div v0 on r).0 d0

In the sequel, c, co, cl, c21 ..., denote positive constants depending at most on 0.

Moreover, coo c6, cjl, .. , denote positive constants depending at most on

no Ve V, k, M* 1, and S. The same symbol c (or c') will be utilized to denote

different constants, even in the same equation.

In section 3 we prove the following result:

Theorem A. There exists positive constants c' and c,1 such that if

f1H, g c i2' an

(1.7) Mf1 + Ig6 2 4 c0

3 -2
then there exists a unique solution Wo~o) e H 0 of problem (1.6), in the ball

(1.8) lul 3+ 101 2 4 a1

~crucial tool in order to prove this result will be the study of the linear system

-iju - vVdiv u +kV r, in 0,

m1'~ ) div u+ v.V + adiv v g in 9,

for which we will prove the following result:

-3-
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IV

There B Le F( 1 , 
g e 2, 3

Theorm B. Lot F c g and v e H be given, and assume that (2.14)
3 i2

holds. Then, there exists a unique solution (u,U) C H 0 d x of the linear system

(1.9). Moreover,

Plul3 + kl 4 C(1 + IJ + u + ilq2 + v
(1.10) + c 1 + IsJV i192•

In smect:io4 e assume that the function p(O,A) depends, in a suitable way. on a

parameter X. By letting X +-, we prove that the solution of the Xavier-Stoke"

eqation (1.1) is the incompressible limit of the solutions of system (1.13). For the

justification of the physical aspects of the description (i.e.. the behavior of p(pA),

as X we refer, for instance, to reference (11.

We assume that for each value of the parameter A c [IO + (XO e R, has no special

meaning) the function p(0,X) is defined in a neighborhood I I -)L, U+LX] of a,

where 0 < L < m/2. Moreover, for each fixed X, the derivative dp(pX)/d0 - pl(p,),

is Lipschitz continuous on IX, with Lipschitz constant S.. .

We define kI - p'(m,X), and assume tht kA o k0 > 0 (the constant k0  has no

special meaning, since we will let k. + +-, as X + +-). We suppose that there exist

positive constants * and L such that

(1.11) S * k2 , V A X.

and

(1.12) t ~k A  t' V X X 0 •.,'.--

By (eventually) defining a smaller t.,' we assume, without losing generality, that

L kX " L. Finally, let w (a) be defined by p'(m+aA) - k - W ().

Consider the stationary compressible Navier-Stokes equation, with state function

,. ° °- .

-''% I"-.

-4-9
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S-Muu vV div u x + Vp(PxIX)) P A (f -(ux*V)u X)

div(o ,uQ - 0 , in nl

(uk)Ir - 0

and the incompressible Navier-Stokes equation

Uh.+ Vir(x) -m(f -(u*-V)u]j

(1.4)div u =0 ,in n)

As above, we set o,(x) =m + aCx), and we look for solutions of (1.13) verifying

assumption (1.2), i.e. such that (1.3) holds.

We denote by Z, z
0
, Z1 , c2,.... positive constants depending at most on

Ql, u, v, m, E, 6 anid Sc, and we say that a positive constant is of type Cif it

depends at most on the above parameters.

In section 4, we prove the following result:

Theorem C. There exists positive constants C 0 1 C1- such that the following

statement holds: -

Mi Let f e' H1 belong to the ball

1 0

Thnfo ech No~ , problem (1.13) has a unique solution (u , 3) W20 in

the-ball

E (ii) if lia k~ then



4..

ux +u weakly in H
3 , 

strongly in Hg, V a < 3 ,

divu, + 0, weakly in H2, srnlin Hs2

(1.17) +1 +0, strongly in i2

Vp(pxA•) + VW , weakly in H1, strongly in H
s
, V s < 1

where (u ,Vw) is the unique solution of problem (1.14).

The existence of the solution (u,Vw) of (1.14) is well known. However, it follows

from our proof, too. .

Note that both problems (1.13), (1.14) are invariant under addition of arbitrary

constants to p(X,p) and w, respectively. a--.

An existence result for system (1.1) was given first by Padula, in reference (3].

Unfortunately, the (quite simple) pc¢>of given there depends in a crucial way on a

smallness condition on p respect to V ( u and v positive constants). This

condition was dropped in Valli's paper (5], where a result similar to Theorem A is proved,

by approximating the stationary solutions with the periodic solutions of the corresponding . .

evolution problem. This technique was applied in [6] to the heat-depending case, and to

more general boundary conditions.

The proofs given in our paper are quite simple, and apply as well (without any

supplementary difficulty) in the context of other spaces of functions, as for instance

Sobolev spaces H kp, I< < 
In particular, for small data (f,g) E Hk+1 x--k+2

H0  , there exists a unique solutionpk+3 -k+2
(u,c) E H0  x H , in a neighborhood of the origin, for every k ; 0 (we assume the

derivative p k+1) Lipschitz continuous, and Q of class Ck).

Furthermore, all the results hold again in any dimension of space (on dealing with

the non-linear problem in space Hk '
p , k must be sufficiently large).

Statements and proofs, in the above general setting up, will be given in a

forthcoming paper, where (for completeness) we will consider the heat-conductive-case. In "

this paper, we state only the counterparts of theorems A and B, in appendix 2. The proofs

-6-
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can be easily done, by following those of theoreMs A and B. Here, we have preferred

considering the main case (1.1) by itself, in order to avoid secondary technicalities. in

fact, in the heat-depending case a third equation should be added to system (i.1) (see

(6.1)). However, that equation is weakly coupled vith its companion equations, in system

(61. An a matter of fact, the more interesting mathematical problems and the main

difficulties, already appear on studying system (1.1).

Finally, it goes by itself that quite obvious assumptions and devices, allow the

coefficients 4, v X, cv y and y' on depending on u, p and e.

2. Proof of Theorem B

We start by proving the uniqueness of the solution of the linear system (1.9), under

the assumption (2.1) below. Let (u,o) be a solution, with data F - 0, g -0. By

multiplying both sides of equation (1.9), by mu and of equation (1.9)2 by Ice, by

j integrating over nl and by adding side by side the two equations, one easily shows that

mu0 Ivul iIiv vi. *cyIl

where UO minjU, u+ v).

Hence,

Rul 1 2 c kIdiv vj. 112

Moreover, from (1.9 ),it~ follows that

kdol 4 ckIl- c(V + II ul

since a =0. Consequently,

1u2  + c -IVI) 2

lull 4cIdiv vi. lul.

j This proves that the uniqueness holds whenever

0 k

(2.1 .v0~

3%



2
for a suitable positive constant col recall that H CL

In the remaining of this section we prove the existence of the solution of system

(1.9). we assume that v cH 3  verifies the condition
0 ,d

(2.2) Idiy vi. + 2[VvI. < mjc/(j + v),

1, -2 -2tand that F C H ,g f T0  f Le i2£ and consider the linear problem

* (2.3) Xs--) + V* VA1  G
U V

where

G Ag + -j +-- div F-

(2.4)

-[2Vv V2 T + AV VT + A (T div v)]

The significance of equation (2.3) is strongly related to the identity (2.20). It is

well known (Lax-Phillips (2)) that there exists a linear map G + X1, from all ofL2

*into L 2 such that for each G c L 2the corresponding A1 is a weak solution of (2.3),

* ~~and verifies the estimate 1~vi

2
By a weak solution of (2.3), we mean here a function X1 c L such that

(2.6) rk Xcpdx fn X div(4pv)dx f. Gcpdx, Yap o,

For the reader's convenience, .1k c c 4,ti i mplete proof of this result in the Appendix

By using the embeddings H IC L 4and H 2C L ,one verifies that IGI is bounded0

by the right hand side of equation (2.7) below. Hence our solution X~ of (2.3) verifies



mk(2.7) 11 + vI 0 ( II g 2 + VI3 T2

Let now 6 H 2 be the solution of the Dirichiet problem{(W + v) A8 = - div F, in Q

(2.8) 
.ei 0 .

By using (2.7), one has

(2.9) (Pj + v) goo 4 c (IF +V Ig + lvi ItrI + core

2 s (l 1 + g2 3 2 1

Define now

(2.10) 6 0x W OWx -

- 3 -2
Clearly. 00 0. Let (u, a) be the unique solution in the class H 0 XH of the

following linear Stokes problem, in S1

P -Au + kVa F + vo

(2.11) div u 0 0,{l ur

From the L2estimates for this problem one has

(2.12) POURl + k~o 2 -4 a (IN + I le I61 + i11 I

By taking in account that 16 0 12 4 go612. one gets

Plu I3  k~al2 < C(i + P + lVI + P + 'v') IFRI +

(2. 13)

+ a1 Y-Mv (egg 2 + NtrA3 + n T0

-9-



'et now c2 be a pos~itivew constant~ uc.h that
£3

Idiv vi,, + 2jVw. -C c 2 1w1 3P Vw H

In the remaining of this section we assume that the vector field v verities the . '

condition

(2.14) IV13 4yk

where, by definition,

1_ __ 0 m
(2.141) 2 S mint-Ivt a

c 11+Iv"1) 1,~ cI) 2 (u+v)'

* Assumption (2.14), implies, in particular, (2.1) and (2.2).

From (2.13) and (2.14), one gets l
Pll3+ kiol 2 < kITE1 +

* (2.15)
P + lVI +i + + lv

c(1 + + + + 1V1) 1F1 + c . Ig

At this point, we call attention to the sequence of linear maps, introduced above:

(F, g, T) -4 (F, A) + (F, 6) + (F, 00) + (u, a)

*which were defined by equations (2.3) + (2.4), (2.8), (2.9), (2,11), respectively. The

product map (F, g, T) 4 (U, a) is linear and continuous, by (2.15). Hence, if

(uVl a is the solution corresponding to data (F, g, T), it follows that

*(U - U 1 , a - cyI) is the solution corresponding to data (0, 0, -r - T Consequently,

* (2.15) yields, in particular, ~

1 2 2 1 2
-2

Hence, for fixed F and g, the map T + 0 is a contraction in H .Consequently,

it has a (unique) fixed point a T

In the sequel we prove that the pair (u. a), corresponding to the fixed point

0 =T, solves equation (1.9). Equations (1.9), and (1.9)3 follows from (2.11). In order

*to prove (1.9) 2, we start by substituting the expression of A~, obtained from equation

* (2.8)1, in the first term on the left hand side of (2.3). This yields, since T a

-10-

. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ) . ........ ......

%S



0p.'. -..

mAO + v V + 2Vv V o + Av Va + A(i div v)*'' '"
(2.16) -"

=- Ag.

On the other hand, by applying the divergence operator to both sides of equation

(2.11)1, and by utilizing (2.11)2 one gets -(p + v)AO + khc - div F, since A6% - AS. By

comparison with (2.8)I, one shows that X - Ao. By replacing A by Ao in equation

(2.16), it follows that O

2mA div u + v * VAa + 2Vv V a+ AV • Va +
(2.17)

+ A(v div v) - g 0

or equivalently,

(2.18) Alm div u + v * Va + a div v - g] - 0, in nl

The function between square brackets (which belongs to H1) is equal to the constant

-m 6 on the boundary, by (2.8)2, (2.10), (2.11)2, and by the assumptions v = 0,

div v g 0 on r • onsequently,

m div u + v • Va + a div v - g - -m, in n

By integrating both sides of this equation in n, one shows that it must be 6 = 0

Hence, equation (1.9)2 is satisfied. Finally, the estimate (1.10) follows from (2.15).

Remark. One has to be careful on deducing (2.18) from (2.17), since both equations hold N

only in a weak sense. The point is to prove the identity

V(v • Va) • Vqdx - a A div(qv)dx +

( 2.19 ) '.%.'( 9 12V : V2a + Av Va] dx, V9 c C
+0

which is a weak formulation of k7
V2c

(2.20) A(V * VO) = v * VAU + 27v a + AV VO •

I:.. ."

II
-..... ,......

C C * .- " -
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For a e H3, this last identity holds, and yields (2.19). If a e H2 , we approximate

it (in the H2 norm) by a sequence of functions a H 3 , and we pass to the limit in
n

equation (2.19) (written with a replaced by an) as n + + * •

3. Proof of Theorem A

For convenience, in this section we will not take case on the explicit dependence of

the positive constants respect to the parameters. However, all the constants depend at

most on 9, u, v, k, m, t and S.

Let c3 be a constant such that ]TI C c 3 IT12O for every T C H2  We will

utilize here the condition

(3.1) ITO2 rE

which guarantees that m + a(x) belongs to the domain of p, for every x e n, since

-< ( r(x) ' 4.

Let v c H 3verify (2.14), and T e H2 verify (3.1), define

(3.2) F(v, T) - (m + T)[f - (v • V)v] - W(T)VT,

and consider the linearized system (1.9) with F(x) given by F(v, T), i.e., the system

ihu- vV div u + k~a - F(v, T), in nl,

-°-AL

Since H1 C L4, H2 C L and IwlT)I. 4 SITI. 4 (1/c3) S IT12F one easily shows that

3 f 2 2*(3.4) IF(v, OI -C C(j a + .- )(If1
1
+ lvi) + CSlrl

11 2 2

This last estimate, together with (1.10), yields the following result :-

Theorem 3.1. ret v C -0,d' T e H and let (2.1), (2.14) and (3.1) be satisfied.

Then, th unique solution u, a x H of system (3.3), verifies the estimate
0

(3.5) luE + IGO < aCTI2 + Iv22 + b(If 1 + Ig1

3 2 2 2 (f 1 +g 2)

-12-..

%-

,.- .. .- . .-.- . ., '-...'- -- ''" . -"-. - .- . '- ... . - ' .- ... ,., .•' -. - .- .. .- ... .,- . ... ... ... "-. ... -. '.. . . , '. .- -



I.N

____________________ ___ __________ __ S. '5-

where the positive constants a and b depend only on R, Vj, v, k, a, I and S.

The excia'ten',e and uniqueness of the solution (u, a) of system (3.3), enables us to

define the corresponding map Cu, 0) - TVv,T). The fixed points of the map T are just

the solutions of the non-linear system (1.6). in order to prove the existence of these

fixed points we assume that

(3.6) 1f11 + 1912 4 ~mn.- yk, -1
3

and that ' '

(3.7) OviI + Uii '4 min{i6  yk., -5%
3 2 2a

The parameter c 10], 1], will be fixed later on. Consider the ball

3 -2:861 J(V, T) e Hd H (3.7) holds}

1 2
This is a compact set in HX L . Moreover, by using (3.5), one shows that-

0. .

TB6 C BV6 for every 6 < I . We vent to prove that, for a sufficiently small

6, depending only on 0, ua, v, k, m, X and B, the map T is a contraction in B.

Hence T has a (unique) fixed point in BS, and Theorem A is proved.

Let [u, a) =T~v, r), Wit, a) T 1(v1, T) F =F(v, r), F1  F(v1, T1  One has,

in Q,

-ji A(u - u) 0 v div(u - u) + kV(a - a~ P Fit

(.)m div~u - u,1) + v V 7C - a,) + (v v a + "'

+ 0div~v -v) + (a a i div v 0

By multiplying both sides of equation (3.8)1 by m(u - u,1) and both sides of .-

equation (3.8)2 by Mca ac), by integrating in n, and by adding side by side the two

equations obtained in that way, one shows that

-13-
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2 2

m(U IV) IV(U U )I 1 kldiv vj. la aI+

- Ivi) IV(u - ul -In2 ]. V - Ol 0

1 0 2 1 0
(3.9)

)+ ckll2 I v I l Ia - a130 + miF - FI1-1 lu - U1 11.

In proving (3.9), we utilized the Sobolev's immersion theorems H2  L and
H C L4, and also the inequality ldiv(u - U ( IV(u - U )I0 *

From (3.9) one has

2 2
,u- U1 1 4 cIdiv vj. la - a,, I

(3.10)
2

+lo1 2 IV 1V1 l 1 0 + l F11-1

On the other hand la - all 4 cIV(a - a )1_1 since a - a has mea value zero.

Hence, by using the expression of V(a - a1) obtained from equation (3.8),, (or L 2

estimates for the linear Stokes problem) we show that

222-2

(3.11) na - ai 1 4 c' u - UI,2 + c'IF - F
01 0 12-1

By multiplying both sides of equation (3.11) by 1/(2c1, by adding (side by side)

this equation to equation (3.10), and by using standard devices, we prove that

1 - u , + c;1 - c' Idiv vl) Ia - all ,

2 1 1 3 0 ~\
(3.12) .

Clio *I IV y + c'IF - F2I
12 F 1I 1

for some suitable positive constants c , c , and c'

On the other hand

IF - F 1 1 Ifl 1 IT - 1 + c( 2 + ITE 2 (lvi + IVl1I) Iv - VlIl+

(3.13) 2

+ c[uvln2 + S1 I 2 + n1 1 n2 )] nT -t 0

1 4
In fact, by using the immersion H CL 

4 one easily shows that

I(T - 1)fl-1  4 If 1 I 1 - l0

-14-
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Similarly,

Ilv * V)v - (v1 * VliI I 1 c(Ivl1 + IV111) Iv - V III

IT(V V)v - Il(V1 * V)V I- 1  0 CT1 2 *(v V)v - (VI • V)V II- +

CV 12 IT -T I.

Furthermore, T(x

IW(T) VT - w(T 1 ) VT1 I.1 - IV. f w()dll

T 
(x) 0 1 0

The above inequalities yield (3.13).

For X 4 a/c1c4, one has cIdiv vj. o c 'v'3 < 1, by (3.7). Hence, from (3.12),

(3.13) one gets

2 2 ,2 2
lu - U 1 + IV - 010 € 'IfIl IT - T I0 +

(3.14) + c[(, + IT, 2 ,) 2 IlE + IV1I 1I
2

I + I , 1 1 - 2

+ c[IVl1 2 + S(lTI2 + Ir1 2 ] I - 1 2
2 2 12-

By choosing 8 sufficiently small, depending only on n, U, v, k, m, I and S, one

has

eu - u 1 I - 0I0 !(Iv - v I + IT -t lI)

Hence T is a contraction in B, which proves Theorem A.

- . . -. - -.

-15- •"
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1 2

Remark. B1  is a compact and convex subset of 0 x L 1  1T sontinuous

respect to that topology, and TB 1 C B, • Hence, ye can prove the existence of (at least)

a fixed point in B1 by using Shauder's theorem. The uniqueness follows by using (3.14)

(actually, it is quite trivial to obtain more stringent uniqueness results.).

4. Proof of Theorem C. During the proof of part (i) of theorem C, U ok, kA. Xo, will

be denoted by u, a, k, w respectively. Theorem B states that if F e H1 , g - 0, and if

v C O~d verifies the condition

i (4.1) Il 3 ( yk

then there exists a unique solution (u,a) c H 3d x H2 of the linear system (1.9). ."

Moreover,

(4.2) pu11 + kol2 -C c(1 + m11' + U 121

Let us now fix T e F' in the ball

(4.3) ITO 2  - , or equivalently, IkTI2 6 -

3 3

where c3  was defined in section 3, and I is the positive constant defined in (1.12).

Condition (4.3) guarantees that IT(X)l 4 IAO V x e n. In particular m/2 M + T(x) 4

(3m)/2.

By defining F(v,T) as in (3.2) (recall that, now, w - wX) one has, as in section

3,

IF(vT)I1  ++ Ivc3) + cSllE
2

c.m +.-)(1f1 1 +IV 2' XIT 2

Hence,

* (4.4) If~vr1 Cc.m-&-)(InE + IvEI + c~k ITO~

1 2 c3  1 2) 2o. '.

(recall k - kX). If v and T verify assumptions (4.1) and (4.3), it follows from (4.2)

and (4.4) that the unique solution (u,o) of system (3.3) verifies the estimate

(4.5) u + kal a(IkTI + Iv2) + b 1 ""

3 02 2  2  1

where now a and b are constants of type Z (the above result corresponds to theorem

-16- . -
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3.1, in section 3).

The proof goes on as in section 3, by utilizing now ka and ET instead of a and

T, respectively (in this way, inequalities (3.5) and (3.1) becomes (4.5) and (4.3 2  --..

respectively; condition (4.1) remains unchanged).

Following section 3, we denote by T the map (u,a) - T(v,r), where the data

3 2
(v, ) e HOd ;j2 verify (4.1), (4.3), and (u,a) in the (corresponding) solution of

system (3.3).

We fix f f H verifying (3.6) (here, g - 0), and we consider the restriction of

T to the ball 35, 0 4 6 1, defined by the condition

(4.6) ye3  I 2 i.n1 , a, .yk, .

3

The substitution of T by kT transforms (3.7) on (4.6). Arguing as in section 3,

and recalling that k ) k0, we prove inequalities (3.10), (3.11) and (3.12), if in these

inequalities we replace a, a, T I by kI, kI, kT, kTI respectively. The constants

c', cl, cl, cj are now of type c, hence independent of k.

Inequality (3.13) holds, as written in section 3. Recalling that S ( k2 , and

that k ) ko, we show that (3.13) holds again, if T, TI, and S are replaced by kT,

kT1, and 4, respectively, and if the right hand side of the inequality is multiplied by

1 + (1/ko).

By choosing 6 as in section 3, i.e. 8 ( a/(cIc4), we get an inequality similar to

(3.14), where now T, 0, T, and a, are multiplied by k, and the constants are of type

c. By choosing 6 sufficiently small (depending only on v, i, V, m, i, *, k0 ) one gets

(4.7) Iu-U I + Ikc-ka I
2 

-C. (Iv-v I - IkT-kT ) I
111 D 2 1 1 -c 1 0)

Hence T is a contraction in Bd, which proves the first part of theorem C.

We now prove pert (ii) of that theorem. Condition (1.15) guarantees the uniqueness

of the solution of problem (1.17), for a sufficiently small c0.

Let us write system (1.13) in the form (1.6), i.e.

-17-
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-1 vV div u k Xx W- Xa )?aX + (2 [ -[f .(ux.V)u A

(4.8)m div u+ Vya a) Xdiv u= O, in a,

(u)lr =0

From (1.16), it follows that there exists u. C H3  such that (1.17), holds (here,

we consider subsequences of uAi the convergence of all the uX to u., as A + -,

will follow from the uniqueness of the limit u., since we will show that u. is the..'-

solution of (1.14)).

The bound (1.16), and the hypothesis kX + +- as A * +, imply (1.17)3.

Furthermore, equation (4.8)2, together with (1.16) and (1.17)3, shows that div u. + 0,

strongly in 91, as X + +-. Since Idiv u I2  is bounded, (1.17)2flos In

particular, div u. = 0.

Now, we pass to the limit in equation (1.13)1, as X + . One has iuAu + UAu and

" -vV div uA + 0, weakly in HI and strongly in Hs , 0 4s < and pX + m, strongly

in H2 . Moreover, P (ux.V)uA + m(u*.V)u., weakly in H2  and strongly in H8, 0 ( a < 2.

By using equation (1.13)I, it follows that Vp(pA,X) + jAu. + mff - (u..V)u.1, weakly

in H1, strongly in Hs , 0 4 s < 1. Obviously, the limit function must be of the form

Vw(x). Theorem C is completely proved.

C

. . .



AlPENDIX I

For the readers convenience we prove here the result stated at the beginning ofON

3
section 2, concerning equation (2.3). We assume that the function v c H , verifies

v - n - 0 on r', and assumption (2.2). This last condition could be replaced by

-J1div vJ. + IJvj. < I'. Let G e H0 , and A be the solution of

C &A + X+ v.VX =G, in n)

where c is a positive constant. Bly multiplying both sides of (5.1) by AX, and by

integrating over n), one easily shows that

12 + -M (_11div vI. + IVvI.)j1 gV) 12

COX

This estimate, together with (2.2), gives

(5.2) IVAXI 1 C (2/M) 1VG1 0

and also

(5.3) COAX 1 0 C Ir2e/M4 1VGI

Hence, there exists a subsequence X such that AC A e H 0  weakly in H 0  and

strongly inL2 moreover, £ &X + 0 in L2 . By passing to the limit in (5.1), as

C 0, one proves that A is a strong solution of (2.3). In particular, A verifies

(2.6). By multiplying both sides of (2.3) by X., and by integrating over fl, one shows

that

(5.4) M - -1div VI.) ~OX 4 IGIa

This gives, in particular, the uniqueness of the solution X~, in H.

-19-
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Since the linear map T H0  HO, defined by TG A , is continuous respect to the,.

L 2 norm, there exists a unique linear continuous nap Textending T to all of L .

Clearly, (5.4) holds again. Furthermore, A~ - 1G is a solution of (2.6).

Remark. The result holds again without assuming that v * n - 0 on r, and with

* condition (2.2) replaced by the weaker condition Idiv vi. c m (or, more generally, by

jdiv vi. 2N) . In that case, equation (2.6) holds for every text function 4P C H~

(we start by proving the existence of a solution A~ for data belonging to the linear

L 2space H generated by an arbitrarily fixed basis {G 1,A 1, 2, ..., on L athen, we

extend the map G A ) to all of L2 , by continuity.)

I%
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APPENDIX 11

6. The heat-depending-came.

In the heat-depending-case the equations are

I-iiAu - vV div ui + Vp(p,O) - pi2 (u*V)u]

jdiv(pu) - q

(6.1) -xA9 + c ,pu.V6 + Opedvu =ph + *(u,u), innf

'11 - 0, el -n

where
au 3u 2 2 W

(6.2) *(u, U) X (- + : + A (divu

Only for convenience, we will assume that Ui '. 0, U + v > 0, X > 0., , A', and n > 0,

are constants. AS for system (1.1), we impose here the additional condition (1.2).

The function p(p,O) is defined, and has Lipschitz continuous first derivatives, in

an L-neighborhood [m-t,m+t] x [n-i,n+tj of (m,n). By setting kc p p(m,n),

'Y- pe(m,n), one has p p (m+a,n+m) - kc - w1(CG)' PO(m+O'n+*) -y-w 2 (G'cL), where i

i1 1,2, are Lipschitz continuous (with norms 4 S) in the L-neighborhood of (0,0);

moreover wi(0,O) -0. We assume the physical condition kc > 0.

By setting

the system (6.1) becomes cc+ys=pf-(.~)+~(~~~

m divu + uV+ adivug9

(6.3) -Xb~n + yn div u -ph - a(m+*)u.Va + *(u,u) -ya div u +

+ 4) 2 (,)(a+n)div u ,inQ

=i 0, a I 0 0

the additional constraint is given by (1.3).

The linearized system is now

-21-



-uiAy vV div u +kVa + YV F

(6.4) ~ ~ m divu + vVa + adiv v -g

(64)1 XA +yn div u -H, in 0

Ul rO-, a IrO

In the sequel, c', c6, cl, 8, denote positive constants, depending at most on A3, on

~j ,y, m, X, n, X, 11, X and S. The dependence of the constants c' on the above

parameters can be easily checked.

One has the following result:

Theorem A. There exist positive constants c() and c', such that if f E Hi,-

Hh c L ,and

(6.5) *f11 + IgI2 + Ehi 4 c
1 2 0 0

3 -
*then there exists a unique solution (u,aj,a) c H x i2 x H 2 of problem (6.1), in the ball

(6.6) PUP 3 + a2 +~2 c

The proof relies on the following result, for the linearized system (6.4)%

Theorem B'. Let F c H, g c H H HO L, n v , Hd- There exists a positive

constant S, such that if

(6.7) NvI 3

then there exists a unique solution (u,a,a) c H03 x Hi x H 2of the linear systm (6.4).
00

* Moreover,

(6.8) PUP 3 + Ion 2 + $0 2 4 c'(IFI 1 + Ig g 2 + PHI 0

-22-
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